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SUMMARY 

A matrix inversion scheme, SIP, i s  introduced. I t  is  a cgbination of inversion by 
submatrices and of iterative inversion. Several variants of the scheme are given, 
together with examples of success and of failure. The report also contains a survey 
of significant analytical inversion techniques. 
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INTRODUCTION 

The purpose of this report i s  to introduce a new technique for matrix inversion, called 
the. Submatrix Iterative Process (SIP). This technique evolved from investigations i n  
the theory of structures, but i t s  uses are of  course not limited to that field. Defining 
the need for a new process of inversion was the realization that a l l  practical methods 
of inversion tend to break large matrices into smaller ones, with the inevitable side 
result that the large blocks of zero entries often present in these matrices lose much 
of their smoothing effect. 

In contrast , SIP inversion makes ful l  use of these zeros. Essentially, SI P consists of  
a combination of two methods: inversion of a matrix i n  terms of i t s  sub-matrices, and 
the subsequent use of iteration on the entire matrix. The technique i s  based on two 
foundations: Theoretically, i t s  successful applications depends on the spectral theory 
of operators in finite dimensional spaces, while from a practical point of view i t  con- 
forms to the fact that large order matrices (at least i n  structural mechanics) tend to 
be the band-type. 

In order to be self-contained to a certain extent, this report contains a section on 
classical analytical methods of matrix inversion, followed by a discussion of numeri- 
cal inversion schemes. Further, recognizing that while SIP can handle any matrix, 
it i s  most efficient on large order band matrices, we give a discussion of the inversion 
of  some special types of  matrices. This i s  followed by an example, attacked in  
several different ways; and a discussion of the connection between redundant struc- 
tures and certain types of matrices. The next section i s  devoted to a ful l  description 
of the Sub-matrix Iterative Process, after which,in the appendix, a simplified SIP 3 
program i s  reproduced, together with various examples of actual inversions performed 
by the computer. The program itself was written and applied by R .  Mc Craney of the 
Wyle Laboratories Computer Staff, on a CDC 3200 computer. The report concludes 
with a brief bibliography. 
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. 1 .O ANALYTICAL INVERSION OF MATRICES 

1) Inversion by Elementary Row and Column Operations 

The layout for this elementary technique i s  given below. We are to invert the matrix 

A =  

a1 1 a12 . . . .  a13 '1 n 

. . . .  a 
a21 a 22 a 23 2n 

a a . . . .  a 
n 2  n3  n n  

a 
n l  

Form the 2n x 2 n  matrix 

K =  A I 
I 0 

where I i s  the n'th order unit matrix and 0 the n'th order null matrix. 
elementary row and column operations, transform K into the form 

I i s  

I 
P 

Q 
0 

-1 
hen easily shown tha. the inverse A of A i s  given by 

A -' = P Q  

2) Inversion by Partitioning 

Then, using the 

We often have matrices of large order, such that they are bui l t  of submatrices with known 
inverses. In many of these situations the inversion of the large order matrix can be reduced 
to that of a 2 x 2 or a 3 x 3 matrix. For illustration, we shall use a 2 x 2. 

A =  Al 1 Al 2 

A21 A22 

Thus, let A be an n x n matrix, partitioned in the following manner: 

f 
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where the orders of the submatrices are the following: 

: k x k  k 2  1 I Al 1 

A1 2 

A21 

A22 

k x  (n - k )  

: (n - k )  x k 

: ( n - k )  x ( n - k )  

A special case of this would be when k = n/2,  in which case each one of the submatrices 
i n  the partition would be a square one. 

Let us assume that A 
-1 

i s  given by a partitioned matrix of the same form: 

The orders of the D's are assumed to be the same as those of the corresponding A's with 
identi ca I subscri pt . 
With the assumption that the following indicated inverses exist, simple calculations show that 

- 
5 1  - 

D21 - 

D22 - 

D12 = 

- 

- 

-1 
(Al 1 - A12 *22 A24-l  

-1 -1 
- A22 A21 (All - A12 A22 A21f 

- I  
(A22 -A21 A l l  

- -1 A12 (A22 - A21 -1 A 1 2 P  

Assuming that we know the inverses of A these formulae reduce the com- 

putation of  the inverse of an n x n matrix to that of a k x k and an (n - k) x (n - k). 
Considering that, i n  general, P3 computations are needed for the inversion of  a matrix of 
order P, the number of computations in the partitioned scheme could be up to about 40 
per cent less. 

and of 11 
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If, i n  addition, either D or D or both are null matrices, these formulas further 
simplify. 

3) Inversion by Bordering 

This  method i s  really only a variant of the previous one. They differ only i n  that the border- 
ing scheme i s  simply an iterated partitioning procedure. 

For this method we have to assume that each one of the leading submatrices of the given 
matrix A i s  nonsingular. Thus, if 

12 21 

A =  

al 1 

a21 

a 
n l  

a12 

22 
a 

a n 2  

. . . . .  

. . . . .  

where the a.. may be subrnatrices, then we must have 
' I  

de t 

e tc 

all a12 

a21 a22 
t o  

a 

a 

I n  

2n  

a 
n n  

The process here i s  also simple; invert, in succession (by using the formulas of the previous 
section) the matrices 
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I allI 

al 1 

a 21 

I all a 1  2 a13 

a 22 a 23 

a32 a33 

etc. 

4) Inversion by the Minimum Function 

This process utilizes the results of the Hamilton - Cayley theorem: every matrix A satisfies 
i t s  characteristic equations. In fact, an n x n matrix w i l l  satisfy a polynomial equation of 
the form 

k-1 
+ . . . .  + ak = 0, 

k 
f ( x ) = a x  + a x  0 1 

where the a's are constants and k s n .  Assuming that, by an empirical method, we can 
find the above minimum function of the n x n matrix A, proceed as follows: 

k-1 + . . . . +  a I = 0 
a O A k  + al A k 

There fore, 

and thus 

+ . . . +  a k -2 A + "k-, I ) I 
A-' = - -  1 (aOAk-' + al A k -2 

'k 
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a) Pivotal Condensation Technique 

b) Orthogonalization Technique 

c) Factorization Technique 

In addition to these, mention should be made of group theoretical methods. These do not 
actually invert a matrix; however, considerations of the symmetries of a given matrix, 
can reduce the computations by factors of 20 to 60; and are thus extremely important 
tools. 

provided a 0. However, i t  can be shown that i f  a = 0, then the matrix A i s  

singular and there does not exist an inverse. 
k k 

5)  Special Analytical Methods 

There exist several other analytical techniques; however, each one of them i s ,  essentially, 
a step by step procedure. Therefore, asa rule, i t  i s  much more economical to use a com- 
puter when these methods are indicated. Some of these additional analytical methods are 
the following: 
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2 .O NUMERICAL INVERSION OF MATRICES 

By a numerical method of matrix inversion we shall mean a technique, whereby the inverse 
of the given matrix A can be computed to any desired degree of accuracy. These methods 
are either matrix-iterational, or power series methods essentially, Indeed, one could char- 
acterize the latter by calling i t  an operational method of inversion, 

& a  rule, these techniques are most efficiently applied by high-speed computers, because 
of  the large number of computations involved, Thus, while one may prefer one numerical 
scheme to others, occasionally the immediate availabil ity of a computer program, based on 
a different technique, presents a dilemma . That i s  why i t  i s  necessary, even for one not 
involved with the actual computer work, to be familiar with these techniques,, Matrix com- 
putational work has the sometimes inacceptable characteristic of forming smal I differences 
of large numbers - which might lack any accuracy or indeed, any meaning, for the given 
problem. Therefore, every one of the numerical methods has to be evaluated very carefully, 
with a view for trying to obtain an accuracy commensurate with that of the observations, 
which led to the determination of the entries of the original matrix. 

1) Inversion by Perturbation 

We shall describe this method by means of  an example also. Let us consider the matrix A, 
and assume that i t s  inverse (not known) i s  A'1 Then 

A A-' = I , 

where I i s  the identity matrix. 

In actual fact, we do not know what A- '  is; however, many of the methods of the previous 
section might be applicable to find a so-called approximate inverse A*,  In particular, we 
can write 

where { Al, A2, A3, . e } i s  a sequence of (as yet unknown) matrices and 0 S E < 1. 

Thus we can write 

A A - l  = A [ A *  + E A1 + E 2 A2 + . , e .  ] = I  

I f  we assume that A *  i s  an approximate inverse in the sense that 
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A A *  = I +  e C f  

where C i s  the "correction matrix", we can write 

A A - '  = I + E C  + e A A 1  + E 2 A A 2 +  E 3 A A  + . . . .  = I  3 

Considering only the right hand side equality, we conclude that 

Further 

C =  - [Al + E A  + € A 3 + . . . ]  2 
e *I + E A 2  + 1 2 

[ A *  + 2 

where we can now equate the coefficients of E, to obtain 

- A 2  

- A3 

Al C = 

A2 C = 

A C = - A  
n n + l  

This recurrence relationship can also be written i n  the form 
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A, = - A *  C 

A = A *  C2 2 
3 

A3 = - A *  C 

A = (-1)"A* Cn 
n 

From this we see that the only requirement with respect to the approximate inverse A *  i s  
that i t  be I1accuratell enough i n  the sense of having a correction term converging to the 0 
matrix. In particular, i f  we are fortunate (or skilled) enough to find an A *  such that 

A A *  = I +  E K  , 

where K i s  nilpotent of order n, then the true inverse 
matrix sum 

A-' wi l l  be given by the finite 

Thus,theaccuracy of the inversion actually depends on the question of whether the elements 
of the correction matrix approach 0, i n  the successively higher powers. Let us note,in con- 
clusion, that this can be determined a priori: i f  each of the sums of the absolute values of 
the elements i n  each row i s  less than one, then the powers of the correction matrix w i l l  con- 
verge to 0. 

2) Other Numerical Techniques 

The basic iterational scheme was given above. It has several variants (relaxation of base 
vectors, etc .), a l l  based on the same principle. In addition to this, we might consider as 
numerical techniques any of the variations of the basic Gauss process, such as the square 
root, Doolittle, Crout, etc., techniques. By our definition, they become "numerical", 
when the number of necessary calculations exceeds a certain acceptable l i m i t  (which w i l l  be 
the case when there i s  no regularity or other simplifying effects in the matrix); at which time 
one would resort to a high-speed computer. It i s  well to point out here, that almost a l l  com- 
puter programs uti l ize the Gauss process, because it consists of a large number of easily 
codable steps. 
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3 .O INVERSION OF SPECIAL MATRICES 

A =  

1) Essentially Diagonal Matrices 

al 1 

0 

0 

0 

0 

These are matrices such that the absolute value of the diagonal element i n  any given row 
exceeds the sum of the absolute values of the other elements i n  that row. The guideline in 
inverting such matrices could be the fact, that the matrix formed by subtracting the unit 
matrix from the "normalized" essentially diagonal matrix(norma1ized here means the following: 
each row i s  multiplied by the inverse of the diagonal element) i s  one whose row-sums are a l l  
less than 1; and thus the iteration procedure outlined above can be used on i t .  Of course, 
i f  the matrix i s  strictly diagonal, whether by means of its basic elements or by submatrices, 
then the inversion i s  direct i n  terms of these. 

2) Triangular Matrices 

A triangular matrix i s  one i n  which each element above (below) the main diagonal i s  0. The 
inversion of these i s  very simple: thus i f  

al 2 

a 22 

0 

0 

0 

'13 

a 23 

a33 

0 

0 

n 
. . . .  
. . e .  a 

2n 

a3 n 
. . . .  
. . . .  a 

4n  

a 
n n  

a nd 
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bl 1 

b21 

b31 

n l  
b 

Simple computations show that 

b12 

b22 

b32 

n 2  
b 

-1 
a1 1 
0 

b13 

23 

b33 

bn 3 

b~ n 

2n 

b3 n 

. . . .  

. . . .  b 

. . . .  

n n  
. e . .  b 

I i > l  

-1  -1 
-all a12 a22 

- -1 
a 22 

= o  I i > 2  

- 
b22 

bi 2 

and so on. 

3 )  Factorizable Matrices 

There occur on occasion matrices which can be, more or less readily, factorized. In prin- 
ciple,every matrix A can be uniquely factorized into the following form: 

where T 

0), T a strictly upper triangular, D a diagonal and I the unit matrix. Thus, i f  this 

factorization can be accomplished, the inverse of A w i l l  be given by 

i s  a strictly lower triangular matrix (all elements on and above the diagonal are L 

U 
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I 
I .  
I 
I 
I 

The indicated inverses of these two triangular matrices - which are themselves triangular - 
can be obtained quite easily by the method described in the section on such matrices. 

5 )  Ci rcu Ian t Matrices 

A matrix of the form 

1 O 1 1  a12 

al 1 I 
A =  

'13 

a12 

0 

a15 

"13 

. . 0 .  

. . . .  

Y O O "  

" . . O  

a 

a 

1 (n-1) 

1 (n-2) 

O 1 1  

ai n 

a~ n 

a 1 (n-1) 

. 
a1 2 

al 1 

i s  called a circulant matrix. In the inversion of this matrix the method uti l izing the Cayley 
Hamilton theorem i s  often successful; since there exists an analytical expression for the eigen- 
values of the matrix. These can then be used to construct the minimum function and thus 
obtain the inverse matrix A- l .  

The expression for the eigenvalues i s  the following: 

n-1 
X. + . . . .  + a X. 

O 1 1  12 I '3 I I n  I 
+ a  x . + a  A. = 

I 
I 

and where 
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4) Band Matrices 

O X(n-1)(n-2) 

0 0 

A matrix i n  which only the main diagonal and a few of the diagonals adjacent to the main 
one are occupied by non-zero elements, i s  called a band, or a codiagonal, matrix. Such 
matrices, or ones easily transformable to this type, occur quite frequently i n  structural work 
and thus a somewhat more extended discussion of their inversion w i l l  be given below. 

X X 
(n-lI(n-1) (n-1) n 

n (n-1) n n  
X X 

1) I t  i s  often possible to invert such matrices by the factorization method mentioned above. 
The reason i s  the following. If our band matrix A has the diagonal and k of the parallels 
above and below occupied by non-zero entries, then the factored form of i t  will be 

A = ( T L  + I )  ( T u  + D )  

where both the matrices ( T  + I ) and ( T  

the diagonal and the k codiagonals below and above, respectively, w i l l  be occupied by 
these non-zero entries. This consideration often facilitates factoring and thus inversion 

+ D ) w i l l  be band matrices, in which only L U 

2) The perturbation technique of inversion gives good results with the inversion of band 
matrices. It can be applied in the following way: i f  

A =  

0 

0 
e 

e e 

. I *  e 

i s  the given band matrix, for instance, we can partition i t  in the manner indicated. We can 
then immediately use, as our first (and usually very good) approximation to the true inverse 

A- '  the inverse of the diagonal matrix 
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0 I xll x12 l o  
x,, I 0 0 n 

I 

0 
0 

0 

0 

0 

n (n-1) 
0 

n n  I X 

In fact, we can improve on the convergence of the indicated iteration process by reducing, 
as much as possible, the absolute values of those elements, which are deleted in the first 
approximation. This can usually be done by approximate elementary row and column opera- 
tions. As w i l l  be seen shortly, the S IP  technique i s  essentially the logical conclusion of 
this train of thought. 

3) When one i s  more interested in solving the system 

A x = b ,  

(where A i s  a band matrix, x acolumn vectorland b a known column vector) than in  the 
direct inversion of A itself, one can use yet another approach. By it, one would reduce the 
problem of inverting A to that of the inversion of a triangular matrix and another small matrix, 
whose order i s  the same as the number of diagonals occupied i n  A. 

Suppose that A i s  of order n, x = (x,, x2, x3, . . . . x ) 

b =[b,, bZf b3, . . . . bn] and k diagonals of A contain non-zero elements. We begin 

by  inverting the matrix x, obtained from A by the deletion of its first (k-1) columns and 
last (k-1) rows. This w i l l  give the solution of the first (n - k + 1) equations for (n - k + 1) 
unknowns, i n  terms of the remaining (k - 1). In practice, we obtain them by replacing, i n  
the column vector b, each b. by b. - (elements deleted in the i ' th row). From these 
linearly dependent equations we select any one; and using i t  with the (k-1) equations, defined 
by the last (k-1) deleted rows of A, we solve the small system of k equations in k unknowns. 

n 

I I 

Let us note also, that i f  A i s  non-singular but the reduced matrix i s ,  we can sti l l  invert the 
latter. One arbitrarily replaces entries i n  the singular matrix and compensates for this by 
similar replacements i n  the column matrix b.  
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4.0 A N  EXAMPLE 

In the course of the analysis of a certain structure by means of transfer matrices, the problem 
of inverting a band matrix - known to be non-singular - composed of singular submatrices, 
arose. The matrix was 

A =  

a b  

C 2a b 

C 2a b 

C 2a b 
0 0 0 

0 

0 

0 0 

C 0  2a b 

C a 

Here each of a, b, c i s  a singular 3 x 3 matrix and A itself i s  6 n x 6 n. Examination 
revealed that the submatrices 

- 
- 

- 
A1 - 

- 
A2 - 

- 
A3 - 

are not singular. 

a 

a 

I C  

I C  

2a 

2a 

C 

a 

2a 

2a 

b 

a 

Thus these were immediately inverted. However, i t  became soon clear that there did not 
exist a simple way of diagonalizing, or triangularizing, of A. The following three schemes, 
given i n  this example for the 4 x 4 case, were found more efficient. 

a) Let us designate the inverse of A by 0 
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Then the system 

a b 0 0 

C 2a b 0 

0 C 2a b 

0 0 C a 

can be also written as 

x 1  

x2 

x3 

x4 

a b 0 0 

C a 0 0 

0 0 a b 

0 0 C a  

9 0 0 

0 0 

p1 

- - q p2 

p1 
0 0 

0 
o q  p2 

x 1  

x2 

x3 

x4 

x 1  

x2 

x3 

x4 

where 

b; - - b2 + a x 2  + b x 3  

3 
bs = b3 + C + a x  

x2 

We can write the solution immediately as 

l q  

bl 

b2 

b3 

b4 

From this however, we obtain, by inspection, the reduced system 
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Here, again, the coefficient matrix i s  easily inverted and thus the problem i s  solved. In 
conclusion: we reduced the inversion of a 4 x 4 (or really 12 x 12) to the inversions of 
two 2 x 2 ( 6 x 6 ) matrices. This means, i n  the general case, the reduction i n  the number 
of computations by a factor of 4. 

b) A second method that can be effectively used on a very 
type, i s  the following: i f  

A =  

Al B 

C A2 B 0 
C A2 B 

B 
A2 C 

0 A2 C 

C 

B 

A3 

large order matrix of the previous 

for example, where A A and A 
1' 2 3 

are as defined in the previous section and 

0 0 

b 0 

0 C 

0 0 

B =  

C =  

so that each entry in A i s  a 6 x 6 matrix. One can then eliminate, by elementary opera- 
tions, the almost-null entries B and C. Specifically, since the A. are non-singular, one 

proceeds as follows. Denoting the operation of adding k times a row R. to another row 
I 

R. by I 
I 

k R: j R .  
I I 

and similarly for columns C. and C., the scheme i s  
I I 
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[- C AY1] R1’ R 2 

0 C 
C [A2 - B A;’ C I-’ = 0 0 

-{8 [A2 - 8 A;’ C3-l) C 2 - j  C3 

2a b 

C 2a - b plC 

-(c [A2 - 8 A;’ C r ’ }  R2--3 R3 

- - 

etc. 

s21 s22 
I 

0 0 

In these general terms, this scheme increases greatly i n  complexity from step to step. This 
i s  only because of the generality however; specifically, for instance, 

where the S. 

O n  the other hand, however, one can ask the question whether, since the entries are matrices, 
one knows a priori that each one of the indicated inverses w i l l  exist? The answer to this i s  a 
categorical yes, The argument i s  this: by the elementary row and column operation we are 
factoring the matrix A into 3 matrices. Clearly, neither the left, or the right multiplier 
of the emerging diagonal A i s  singular. Since we know that the original matrix i s  non- 
singular, we can invoke Laplace’s famous theorem, that the determinant of a matrix composed 

are the appropriate entries i n  the indicated inverse. 
I i  
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of sub-matrices along i t s  diagonal i s  given by the product of the determinants of the sub- 
matrices, Thus, i f  any one of the inversions would be impossible, i t  would mean that the 
matrix A itself i s  singular, which we know not to be the case. 

c) We can attack this problem in a purely operational manner also, which can be shown to 
be correct by the perturbational arguments of previous sections. Th is  technique w i l l  be most 
effective in this particular case, i f  the products b c and c b of the basic submatrices b 
and c - which are singular here - are also nilpotent. Let us assume that this i s  so; i n  
particular then, i f  c b i s  nilpotent of order M and b c of order N, then A’l i s  ex- 
pressible as the sum of K matrices, where K = max (M,N). One proceeds in the following 
manner: le t  

A *  = 

a nd 

A =  

I 

I 
a b i  

C 2a I 

I 
r F a - - b  . - - - -  

I c 2a 

0 

0 _ _ - -  
C 

0 

(3 

0 I 
I 
I 

so that 

Then, formally, 

A = A *  + A .  

-2 --2 
A-1  = [A* + A1- l  = (A* )-’ [ I  - (A* )-’ + (A* ) A - . . . . I  

Clearly, every even power of A i s  a diagonal matrix with the entries ( b c )  n and (cb) n on 

the diagonal. Thus, because of the nilpotency requirement, 

= o  
and A” i s  expressed as the sum of K matrices. 
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I 
5.0 REDUNDANT STRUCTURES AND MATRICES 

I t  happens very frequently that a structure, which i s  to be analyzed for the forces acting on 
it, i s  found to be redundant. This means that the equations of statics, when applied to the 
structure, contain more unknowns than the number of equations available from this source. 
This mathematical redundance, however, must be only an apparent one; i f  the structure i s  
physically determinate. One, therefore,invokes the laws of elasticity to obtain the necessary 
additional equations of Compatibility. 

There i s  a mathematical description for this situation. Let us posit a structure 5, for which 
the equations of statics give the system 

I -  
I A x  = b 

Here A i s  an n x n matrix, while x and b are column vectors. Since we are assuming 
that we have an insufficient number of equations, b i s  not constant; rather 

b = b (x) 

0 .  

* A  
e 

We can assume, without any loss of generality, that A i s  a triangular matrix. For, i f  i t  i s  
not, i t  can be factored into the product of two such matrices; and i f  the equation be multi- 
plied on the left  by the inverse of the lef t  factor, followed by a redefinition of b, we do 
have the assumed situation. Further, i t  i s  plausible to expect that A i s  a triangular band 
matrix. The reason for this i s  that as one writes the equations of statics at  point after point, 
the coupling between these equations occurs always with a different unknown; and, as a rule, 
every equation contains only a fraction of the unknowns. 

The question now is:  how does one adjoin to this set the compatibility equations arising from 
elasticity theory? If we enlarge the matrix A from (n x n) to (n + k) x (n + k), where 
k i s  the degree of redundancy, and rearrange the vectors x and b so that each wi l l  contain 
(n + k) entries and b wi l l  be constant, then clearly we set up a system where the coefficient 
matrix i s  singular. In  fact, the last k rows i n  i t  consists of zeros. 

The equations of elasticity take their place i n  these rows of zeros, replacing the latter; rend- 
ering the coefficient matrix non-singular thereby. Thus, we have enlarged the triangular 
matrix by a bordering scheme of the following nature: 

k extra rows 

. . . . . . . . . 
k extra columns 

This i s  why we can expect in many of  these situations to encounter a band matrix; i t s  basic 
structure i s  already present in the original matrix A.  
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6.0 THE SUBMATRIX ITERATIVE PROCESS (SIP) 

Inversion by Iteration I 
~~ ~~ ~ 

I 

In the previous section several methods of matrix inversion were presented, with a trend 
towards the developments of  the present chapter. Of the many particular techniques we 
shall now single out two, the combination of which w i l l  yield SIP.  First, however, let 
us characterize these two building block methods by a comparison. 

Inversion by Partitioning 

Domain of effective 
operation 

Number of operations 
necessary to effect 
inversion 

Accuracy of inversion 

I I I 
I I 

Matrices the inverses of which 
are 'la hos t"  known 

Approximately the same as in 
direct conven tiona I methods 

Matrices with nonsingular 
diagonal submatrices 

Smaller than by direct con- 
ventional methods; often by 
orders of magnitude. 

Somewhat worse than by direct 
convention a I m e t  h ods 

Unl im ited 

Automatic corn pu tat ion 
check 

Yes No 

From this i t  becomes clear that a technique incorporating properties 1, 2 of the partitioning 
method, together with properties 3, 4 of the iterative one, would be much more efficient, 
accurate,and desirable than either one of the two by itself. Therefore, we shall now describe 
how to effect this combination o f  methods in the simplest situation. 

Let us assume that A i s  a band matrix of order n and that for some 1 k L Z  and k 
a divisor of n, A i s  strongly diagonal with respect to i t s  diagonal submatrices A; of order 
k .  Let us further assume, that these submatrices are not singular. Then we proceed as 
follows: 

n 

SIP  Scheme 1 (basic) 

1) 

2) 

Obtain the inverses of the A. by conventional methods. 

As a first approximation to A-l ,  form a matrix, diagonal with respect to 
i t s  submatrices, and where these submatrices are the A.-', in their original 
order. 

Iterate this first approximation according to the process described in the 
section on iteration. 

Stop the iteration when the desired accuracy i s  obtained. 

I 

I 

3) 

4) 
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There are quite a few restrictions on the matrix A . Therefore, one ought to ascertain,first 
of all, that there are some matrices which can be inverted by this method. Indeed there are: 
the simplest one being a purely diagonal matrix. In this simplest case n = n, k = &and the 
A. are the elements of the matrix. In addition, here the first iteration gives the true inverse. 

I 

L 

This scheme, however, i s  the most elementary possible; we shall now proceed to give two 
more sophisticated ones. These two w i l l  remove some of the restrictions of the basic method 
as outlined above. We shall refer to the first modification as " S I P  Scheme 2 (operator 
controlled)"; for in using i t  one assumes the performance of certain tasks which are most 
profitably done by a human operator. The assumption on the matrix A under these operating 
conditions are the following: 

a 

b 

C 

Assume that A i s  a matrix of  order n, transformable into a band matrix which i s  strongly 
diagonal with respect to some division (possibly non-uniform) into submatrices, by means of 
elementary matrix operations. Assume that these submatrices are non-singular . 
Under these assumptions, one performs the diagonalization into the appropriate band matrix 
and then proceeds with S I P  Scheme 1 on the transformed matrix. Thus, essentially, SIP 
Scheme 2 represent the addition of a preparatory step to SIP Scheme 1 .  The assumptions it 
removes or changes are the following: 

a) The matrix A does not have to be a band matrix in i t ia l ly  
b) The division into uniform submatrices i s  not necessary. 

Thus, for instance, the matrix on the left below cannot be inverted by SIP 1, i n  general; 
but under the transformation on the right, i t  can: 

The example is,  of course, trivial; but i t  i s  worthy of  noting that the entries a, b, c, can 
be matrices themselves. Let us now give an example of the second advantage of SIP  2 over 
SIP  1 .  
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al a2 a3 

bl b2 b3 b4 

c 1  c2  c3 c4  

dl d2 d3 

el e2 e3 

fl f2 f3 

hl h2 

91 92 93 94 

Depending on the entries here, one might choose as the submatrices (proceeding from top 
left to bottom right) a 3 x 3, a 2 x 2, a 2 x 2 and a 1 x 1; or, perhaps a 3 x 3, a 2 x 2, 
and a 3 x 3; or else two 4 x 4's. In any case i t  i s  clear that the choice of size i s  an advan- 
tage. (Let us note here that a l l  locations in these matrices, which are unoccupied by a 
symbol , are assumed to contain zeros). 

Finally, weshall now describe " S I P  Scheme 3 (automatic)". In order to emphasize the 
difference between this scheme and the preceding two, we shall characterize this variant 
by noting that its use i s  profitable in the inversion of matrices of very large order (say 
200 x 200), where it i s  suspected that the matrix i s  strongly diagonal. The scheme i s  
completely automatic. 

SIP Scheme 3 (automatic) 

Select the diagonal 2 x 2 submatrices of A, invert each, and 
form a matrix from the inverses of  the 2 x 2 ' s ,  in their original 
order. 

Iterate this first approximation according to the process described 
in  the section on iteration. 

Stop the iteration, when either a .) the desired accuracy i s  obtained 
or b .) divergence occurs. 

If divergence occurs, return to 1 .) and start with a 3 x 3 division. 
I f  i t  turns out to diverge also, return with a 4 x 4 division, etc. 

Stop when either a) inverse i s  obtained or b) 
tion thought to be feasible i s  completed. 

Since in each iteration of order n the last submatrix i s  unlikely to 
be of order n also, invert i t  independently and place i t  in i t s  position, 

highest order itera- 

b 
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I t  would be well to point out a few facts about the economy of SIP 3. To give a concrete 
example, let  us assume that we succeeded in inverting a 200 x 200 matrix with the 
fourth iteration (using i t s  5 x 5 subrnatrices). 

By conventional methods (if the c.mputer has enough storage to use conventional methods) 
the number of computations necessary to invert this matrix would be proportional to 

(200)3 = 8 x 10 . On the other hand, one easily finds that by SIP 3, the number of 
operations necessary (including the first three unsuccessful trials) would be proportional 

to 11 x 10 . Savings are therefore by a factor of almost 1000, which i s  significant. 

6 

3 
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APPENDIX 

This appendix contains a simple program, corresponding, essentially, to an elementary ver- 
sion of SIP 3; and some examples illustrating the success, inconclusiveness, or failure of 
i t .  The matrices used are 4 x 4, 6 x 6, 8 x 8,' 10 x 10, and 12 x 12. As a first approximation 
to the inverse, simply the unit matrix of the appropriate order was used in most cases. The 
only two ways in  which this was modified were the situations where a.) the individual 
entries on the diagonal were inverted, the other positions being replaced by  zeros, and 
the resultant matrix was used as a first approximation; and-b.) the 2-x 2 diagonal matrices 
were inverted to provide a first approximation, in a similar manner. Therefore, with such 
(purposely) crude approximations any degree of success i s  significant. 

An attempt was made to use strongly diagonal matrices for the purposes of this experiment. 
I n  order to have an insight into the mechanics of the methods, each iteration was printed 
out by the computer. The designation "A" refers to the original matrix; "AS" i s  always 
the current approximation, while C i s  a correction matrix. In order to evaluate the 
goodness of the current AS, the product AAS was formed at each step. Finally, the 
computer was programmed to stop after a (small) fixed number of  iterations. 

THE EXAMPLES 

1 .) 
used, This attempt failed, in that in 15 steps convergence was not established. On the 
other hand the second approximation, using the two 2 x 2 diagonal submatrices, converged 
in 7 steps. 

2 .) The first trial for the inversion of the second example, a 6 x 6, clearly failed. 
Here we see the failure in that the exponent of 10 appearing in the printout reaches the 
value 10 after but seven iterations. On the other hand, 12 iterations of the second 
approximation yield an inverse accurate to six places. 

3 .)- 
Divergence i s  not as easy to detect, but i t  i s  clearly present. 

4.) 
this method can yield an inconclusive result. It i s  almost impossible to determine whether 
the tendency of the successive iterations i s  to convergence or to divergence. 

5.) Finally, the last example i s  a 12 x 12. Only the second iteration i s  shown (the 
f i rs t  one diverged) and it converges very well. 

A 4 x 4  matrix i s  presented first, As a first approximation, the unit matrix was 

The 8 x 8 example illustrates the case where the second approximation fails a b .  

The second approximation of a 10 x 10 matrix, presented next, illustrates how 
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C QlVFS FI O A T I N G  P T .  Nn. n 1 F. A ( T . - l )  I . 1 .  

105 C O N T I N U E  
C A I  1 PI A W ( 7 . N )  
CONT I NUE 
WR1'I'F Lfi.31 
DO 11 I a l r N  
W R l T F  (61.4) ( A t  1 . . I )  n . l = l n N b  

11 C O N T I N U E  
C MAKE GUFSS AT AS M A T R I X  WHFRF AS IS THF A INVERSF M A T R I X  

DO 44 I a 1 , N  
DO 44 J x l * N  
l F ( I - J ) l J 1 1 2 ~ 1 3  

G O  T O  4 4  
$ a  A S t I . . I ) a l .  

1 3  AS(InJ)+O. 
4 4  C O N T l N U E  
10 C O N T  ! NUF 

W R I T E  ( 6 1 ~ 5 )  
WHlTF (6116) 
DO 1 4  I n 1 , N  
W R 1 l ' E ( b l r 4 )  ( A S ( l , J ) r J I l , N )  

DO 1 0 0  Lslni5 

DO 1 5  I S l a N  
DO 15 J a I , N  
C [ I , J  ) a 0 1 0  
DO 1 6  K n 1 , N  

1 4  CONTINUE 

C FORM C dATRIX,  WHEAt CGASAS-IUENT M A T R I X  
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W R I T E  ( 6 1 8 5 )  

D O  29 l = l , N  
W R I T F  t h l . W i  

3200  F O R T H A N  U I A G N O S T I C  R t ' S U L T S  - F O R  TESTINVT - - - _ -  
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1.OOE 00 0 0 0 
0 1,006 00 0 0 
0 0 1 , O O E  0 0  0 
0 0 0 1 .0OF 00 

A +  M A T R I X  B Y R O W S  

1.OOF 0 0  2 . 3 9 F - 0 2  O m  
1 . 6 7 E - 0 1  1 . 0 0 E  0 0  1.05f-01 0 

0 4 , 0 9 h - 0 1  1,OOf 0 0  1 , 3 9 E q 0 1  
0 0 2 . 5 O F - 0 1  1.0Of 0 0  

A *  M A T R I X  B Y ROWS 

C M A T R I X  B Y R O W S  

A+ H A T R l X  6 Y ROWS 

A I N V E R S E * A  _- 

30 



C M A T S I X  UY ROWS ._ .. C M A T R I X  dY R O U S  

. 

9 
- 6  
- 4  
-1 
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C M A T H I X  8Y R O W S  C M A T R I X  dY ROWS 

-.L M A T R I X  BY 
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C M A T H I X  t 3 Y  ROWS C M A T H I X  dY HOrlS 

- 1 - 1 9 E - 0 2  - 1 . 9 7 E - 0 2  = 1 , 3 J f - 0 2  - 6 , 3 4 E c 0 3  
- 1 . 3 8 E - 0 1  - 2 . 3 9 E - 0 1  = 1 , 5 5 E - 0 1  - 7 9 6 9 E - 0 2  
- 3 . 6 1 E - 0 1  - 5 . 9 7 E - 0 1  ~ 4 ~ 0 1 E - 0 1  - 1 , 9 2 € - 0 1  
- 3 , l Z E - O l  - 5 . 4 2 E - 0 1  o3.47E-01 - 1 . 7 4 E - 0 1  

A *  M A T H I X  t3.Y.SDNS- - _ -  A *  M A T H I X  t l Y  R O W S .  

A *  M A T R I X  BY H O N S  

A INVEHSE*A. 
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1 . O O E  P O  -7 .39F-03  0 0 
- 1 , 6 7 € - 0 1  1 .OOE 0 0  0 0 

0 0 1 , O O f  0 0  * 1 * 3 9 E * O l  
0 a -2.5u~=oi 1 . 0 0 ~  n o  

C M A T R I X  BY R O W S  

(II 9 F - 0 3  0 0 0 
0 - 3 . 9 9 E - 0 3  1.05f-01 -1,45E102 

- 6 . 8 3 E - 0 2  4 . 0 9 E - 0 1  = 3 * 4 7 E - 0 2  0 
0 0 0 - 3 . 4 7 f - 0 2  

A *  M A T R I X  BY ROWS 

A I N V E H S F * A  

f! U A W  R Y  Boys - 

1.OOE 0 0  -2.29EwO7 2 . 3 0 F  9 -  0 3  3.19E-04 
- 1 1 6 0 E - 0 1  9 q 5 9 E - 0 1  = 9 . 6 2 € * 0 2  1133E-02  

6,26E-02 - 3 , 7 5 E - O l  9 , 8 7 E - 0 1  - 1 q 3 7 E - 0 1  - 7E-03 9 .40E-02  - 2 . 4 7 F - 0 1  1 . 0 3 E  0 0  

A INVFRSFcA 

C H A T U  BY ROWS 

1 .00F  0 0  -2 .49E-02  2.68E 9 8 -  QJ 3 . 7 1 6 - 0 4  
- 1 , 7 4 E - 0 1  1,04E 0 0  0 1 e 1 2 E - 0 1  1 ,55E-02  

7,2YE-02 - 4 . 3 7 E - 0 1  I * O B f  0 0  - 1 , 4 9 6 - 0 1  
I 3E-02 1 . 0 9 F - 0 1  s 2 . 6 9 F - 0 1  1 . 0 4 6  0 0  

A INVERS f * A  
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OF 00 -2 .47F-03 2 .626  - 0  0 3  3,63F104 
-1 .73E-01  1 . 0 3 f  8 0  = I , l O E - O l  1 .52E-02 

7 ,14€-02  - 4 . 2 8 E - 0 1  1.07E 0 0  *1,48E-01 
a .  - 1 . 0 7 E - 0 1  e 2 . 6 7 F - 0 1  1 .04F 0 0  

- 

A INVERSF*A 

l . € I O F - 0 0  0 O -0 
2 ,42€-03  9 . 8 5 E - 0 1  2,62E-03 -3 ,64E-04 

-1 ,71€ -03  1 .02E-02  9 ,85E-01  29 12E-03  
- 0 0 0 1.OOf-00 

e M A T R I X  R Y  R n u S  

A *  M A T R I X  BY ROUS 

A INVFRSEsA 

A INVFHSFsA 

e MATRIX B Y  R O W S  

O n I] 0 

AI MATRIX a y  R O W S  

A INVERSFIA 
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A M A T R I X  BY ROWS 

1 . 0 0 E  0 0  -2,90E-OL 7.73E-02 2 . 5 4 F - 0 1  -0-0 
3 .72E-01  1.006 0 0  1 , 0 6 € - 0 2  3 , 2 1 E - 0 1  3 - 0 2 6 - 0 1  0 

A *  M A T R I X  BY ROWS 

1.ooe 0 0  0 0 0 0 0 
0 1 .00F  0 0  0 0 0 0 
0 0 1 , O O E  0 0  0 0 0 
0 0 0 1,OOE 0 0  0 0 

-0000 1 i M E  1 0  0 
0 0 0 0 0 l t O O E  0 0  

t 

! 

C M U  BY R O U S  

I 

A *  M A T R I X  B Y  R O U S  

A I N V E R S E * A  
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A+ M A T R I X  BY R O U S  

A INV€RSE+A 

C M A T R I X  BY ROMS 

2 . 1 5 ~  0 0  i , 5 8 ~  0 0  1 , 7 6 ~  o o  2 . 4 8 ~  0 0  1 . 3 4 ~  a o  1 . 7 8 ~  00 
2 ,16€  0 0  3 . 0 0 C  0 0  1. 97E 0 0  3 .46€  0 0  7 .38F 0 0  2.33EdL- 
2 , l l E  0 0  2.50E 0 0  3 , 6 5 1  0 0  3e81E 0 0  2.32E 0 0  2.90E 0 0  
1.99E 0 0  2,06C 0 0  1 . 7 5 f  0 0  4,03E 0 0  2 ~ 2 4 E  0 0  2.1I.E 0 0  

_G72%- 0 0  1 * - 9 m U  i f 6 E  0 0  3.36EQ-L24E__M1.86E_M 
1 . 2 8 8  0 0  1 , 2 9 E  0 0  1 .17E 0 0  2116E 0 0  1 .42E  0 0  2.13E 0 0  

__ 
3945E 0 0  3.16E 0 0  3 , 0 6 f  0 0  4 s 8 0 f  0 0  2179E 0 0  3.22E 0 0  
4e17E 0 0  4 t 8 7 E  0 0  3.87E 0 0  6173E 0 0  4 . 6 0 f  0 0  4.26E 0 0  
4.40E 0 0  4 . 9  x . 4 ~ 1  5 . 6 7 ~  P O  7 , 4 s  0 0  A- 
3 .638  0 0  3 .85E 0 0  3 ,646  0 0  6,80E 0 0  4.30E 0 0  4.14E 0 0  
3.39E 0 0  3 .81E 0 0  4,22f 0 0  6,36€ 0 0  5.05E 0 0  3.92E 0 0  
2.29F 0 0  2 .  4 1 6  D O  2.43C 0 0  4110E 0 0  7172F  0 0  3.31F 0 0  
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- 2 e 4 5 f  0 0  3 .166  00 3.06E ho 4.80E 0 0  2- _ho-2L22I4_0_- 
4.17E 0 0  3 .876  0 0  3.87E 0 0  6173E 0 0  4.60E 0 0  1 , 2 6 E  00 
4 , 4 0 E  0 0  4.93E 0 0  4.67E 0 0  7148E 0 0  4.60E 0 0  5943E 0 0  
3,63E 0 0  3 .85E  0 0  3.64E 0 0  5.8OF 0 0  4 ,30F  0 0  4.14E 0 0  
3.39E 0 0  3.81E 0 0  4 , 2 2 6  0 0  6938E 00 4.05E B O  3.92E 0 0  
2 ,29E 0 0  2.41E 0 0  2,43E 0 0  4 ~ 1 0 E  0 0  2.72E 0 0  2.31E 00 

A *  M A T R I X  BY R O W S  

-3,5OE 0 1  -3 .896  01 -3.81E 01 -6919E 01 -4 .09E 0 1  -4 , lOE 0 1  
- 5 , 0 3 F  0 1  - 5 . 3 2 6  0 1  -5 .388  0 1  -8 .68F 01 -5 .74F  0 1  - 9 . 7 2 F  01 
*5,79E 0 1  - 6 , 2 3 €  0 1  -6 .02E 0 1  -9 .93E 0 1  -6155E 0 1  -6 .59E 0 1  
*4 .63€  0 1  -5,OOE 0 1  -4 ,96€  01 -7989E 0 1  -5.30E 0 1  -5.29E 0 1  

- 2 , 9 9 €  0 1  -3 .246  0 1  -3 .226  0 1  -5 ,18E  0 1  *3 ,43E  01 -3 .32E 0 1  
-d,76E 0 1  -5,15C_Qi -5 .12E 0 1  cL2l;f 0 1  -5s31E Ql -5 .476  Q L  - 

- 
-6.59E 0 1  -7019E 0 1  -7 .11E 0 1  -1 .15E 02  -7.61E 01 -7o62E 0 1  
-9 .32E 0 1  -9.99E 0 1  - 1 . O O E  0 2  -1161E 0 2  -1 .06E 0 2  -1 .07E 0 2  
-1.07E 0 2  -1 .156  02  - I . 1 3 6 A L - u !  _pz - 1 2 3 F 4 2  -1*?PE 02 
-8,bOE 0 1  -9.29E 0 1  -9 .236  0 1  -1148E 02  - 9 . 8 1 f  0 1  -9 .82E 0 1  

-5 .57E 0 1  -6 .02E  0 1  -8.97E 0 1  -9 .60E 0 1  -6 ,36E  0 1  -6,281: 4.1- 
- 8 , B b E  0 1  - 9 . 5 6 6  0 1  -9 .46E 0 1  - 1 ~ 5 2 E  02  -9e99E 0 1  -1 .O lE  0 2  

C M A T R I X  B Y  ROWS 

. - 6 ,69€  0 1  -7 .19E 9 1  - 7 L L l L ! L  - d d ~ ~ ~ ~ l  - 
- 9 . 3 2 5  0 1  -1 .01E 02  -1.00E 02 - 1 v 6 1 E  02  - 1 . 0 6 E  02  -1 .07E 02  
-1 ,07E  02  -1.45E 02 -1 .14E  02  -1 .84E  02  -1.22E 42  - 1 v 2 2 E  02  

-8.86E 0 1  - 9 . 5 6 f  0 1  -9.46C 0 1  -1e52E 02  - 1 . O l E  02  - 1 v O i E  02  
- 5 e 5 7 f  0 1  - 6 . 0 2 f  0 1  -5 .97E 0 1  -9 .60E  01 -6.36E 01 -6.38E 01 

- 8 . 6 0 E  0 1  -9 .29E 0 1  - M F  0 1  -1 .49E 02  -9 .81F  0 1  - 9 . 8 7 F  0 1  

A +  M A T R I X  BY R O W S  

2 . 1 2 f  0 4  2.29E 0 4  2 .27E 0 4  3.66E 0 4  2,42E 0 4  2.43E 0 4  
2.98E 04 3.21E 04 3 . 1 9 6  0 4  5 . U E  0 4  3 ,40F  04 S.40E 0 4  
3.41E 0 4  3.686 0 4  3.64E 04 5987E 04 3.89E 04 3.89E 04 
2.75E 0 4  2 . 9 6 6  0 4  2.94E 0 4  4973E 0 4  3.13E 04 3.14E 0 4  

- e 2 ~ 4 . ~ 3 ~  036- ped uu4 -1 ~ Q U ~ U - L Z Z A L  
1 . 7 8 E  04 1.92Ei 04 1.9OE 04 3106E 04 2.03E 04 2e03E 0 4  

3.95E 04 4.27E 04 4.23E 04 6.81E 04 4.50E 0 4  4.51E 04 
5 . 5 4 E  04 5 .98E 04 5.92E 04 9e54E 04 6.31E 0 4  6.32E 04 

~ 6-33 E ~ 4 l _ L e 4 f 4 - - 6 ~ 7  BELP4__tllPE45 7 * 2 2 E 0 4 7123F 0 4  
5.11E 04 5 .51E 04 5.46E 04 8.8OE 04 5182E 0 4  5.83E 0 4  
5 ,25E 0 4  5 .67E 04 5.61E 04 9.04E 04 5198E 04 5 .996  0 4  
3.31E 04 3 , 5 7 €  04 3.5-4 5,70E 0 4  3177E 0 4  3.77E 0 4  
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. 3 . 9 5 € 0 9 . L  27!..IL4_-4_33E_4_4- - J i L R l L & c L . - 4 L 5 I l L I L P _ m a e -  
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